Code No.: 11216 S O

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. I-Semester Supplementary Examinations, August-2023 Semiconductor Physics and Optoelectronic Devices

(Common to CSE, AIMI. & IT)

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

Q. No.	Stem of the question	M	L
1.	Distinguish between Frenkel and Schottky defects in a crystalline solid.	2	1
2.	In a tetragonal lattice a=b=0.18 nm, c=0.25 nm, deduce the spacing between (111) planes.	2	2
3.	Mention the physical significance of wave function (w).	2	1
4.	Calculate the de Broglie wavelength of an electron accelerated through a potential difference of 100 V.	2	2
5.	What is Fermi energy level draw its variation with temperature.	2	2
6.	The conductivity of Germanium at 20°C is 2 Ω^{-1} -m ⁻¹ , what is its conductivity at 40°C? E _g =0.72 eV.	2	3
7.	Write the characteristics of a light emitting diode (LED).	2	2
8.	Write some medical applications of lasers.	2	2
9.	Mention the differences between single-mode and multi-mode optical fibers.	2	4
10.	What are the advantages of optical fibers over co-axial cables?	2	2
	Part-B $(5 \times 8 = 40 Marks)$		
1. a)	Derive the expression for interplanar spacing (d _{hkl}) for a cubic crystal.	5	1
b)	A beam of X-rays incident on a NaCl crystal (lattice spacing 0.282 nm). The first order Bragg reflection is observed at a glancing angle of 8° 35°. What is the wavelength? At what angles would the second order Bragg's reflection occurs?	3	3
2. a)	Explain the formation of discrete energy levels in solids using Kronig-Penney model.	6	3
b)	Find the de-Broglie wavelength of a neutron having kinetic energy of 1 eV.	2	2
	Derive the expressions for electrons concentration in an intrinsic semiconductor.	5	2
	A current of 50 A is established in a Cu slab (0.2 cm thick X 2 cm wide). The slab is placed in a magnetic field B of 1.5 T along z-axis. The free electron concentration in Cu is 6.8 x10 ²⁸ /m ³ . What will the magnitude of Hall voltage across the width of the slab?	3	2

14. a)	What is Electroluminescence? Describe the construction and working of homo junction LED with band diagram.	6	2
b)	Calculate optical power output from a LED with an electron current of 2 mA, efficiency 60% and wavelength 800 nm.	2	2
15. a)	Explain various losses in optical fibers.	6	2
b)	An optical fiber has NA of 0.2 and cladding refractive index of 1.59. Determine the acceptance angle for a fiber in water having refractive index of 1.33	2	1
16. a)	Why visible light is not used to probe crystal structure of a solid? Differentiate between crystalline and amorphous solids.	4	1
b)	What are matter waves? If the de Broglie wavelength of an electron is 0.05 nm then find the applied accelerating potential?	4	2
17.	Answer any <i>two</i> of the following:		
a)	State Hall effect. Deduce the expression for Hall electric field (EH) and Hall coefficient (RH) of a n-type semiconductor.	4	2
b)	What is Luminescence? List various types of luminescence depending upon type of excitations. Also, mention uses of each type of luminescence phenomenon.	4	2
c)	Explain the optical fiber communication system using a neat block diagram.	4	4

M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

i)	Blooms Taxonomy Level – 1	
ii)	Blooms Taxonomy Level – 2	
iii)	Blooms Taxonomy Level – 3 & 4	
